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Abstract 

 
NFV realizes flexible and rapid software deployment and management of network functions 
in the cloud network, and provides network services in the form of chained virtual network 
functions (VNFs). However, using VNFs to provide quality guaranteed services is still a 
challenge because of the inherent difficulty in intelligently scaling VNFs to handle traffic 
fluctuations. Most existing works scale VNFs with fixed-capacity instances, that is they take 
instances of the same size and determine a suitable deployment location without considering 
the cloud network resource distribution. This paper proposes a traffic forecasted assisted 
proactive VNF scaling approach, and it adopts the instance capacity adaptive to the node 
resource. We first model the VNF scaling as integer quadratic programming and then propose 
a proactive adaptive VNF scaling (PAVS) approach. The approach employs an efficient traffic 
forecasting method based on LSTM to predict the upcoming traffic demands. With the 
obtained traffic demands, we design a resource-aware new VNF instance deployment 
algorithm to scale out under-provisioning VNFs and a redundant VNF instance management 
mechanism to scale in over-provisioning VNFs. Trace-driven simulation demonstrates that our 
proposed approach can respond to traffic fluctuation in advance and reduce the total cost 
significantly. 
 
 
Keywords: NFV, VNF scaling, Traffic forecasting, New instance deployment, Redundant 
instance management. 
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  1. Introduction 

Compared with the previous generations of mobile network technologies, the fifth-
generation (5G) mobile network is foreseen to realize the internet of everything such as 
vehicles, drones, wearables, and machinery, especially spurring the development lots of 
vertical industries (e.g., automatic driving, smart cities, and industrial control, etc.) [1]. The 
ever-increasing number of novel applications and services in the 5G network, along with the 
growing demand for data traffic, presses an urgent need for mobile network operators (MNOs) 
to promote the evolution of the network architecture. 

Network Function Virtualization (NFV) plays a critical role in the transformation of the 5G 
network [2-4]. It decouples the network function from traditional dedicated element as 
hardware-independent software called virtualized network function (VNF), which provides 
remarkable deployment and management flexibility. Especially, NFV offers a new model 
representing 5G network services and applications by way of Service Function Chains (SFCs), 
which contain a series of VNFs interconnected in a predefined order [5,6]. 

In NFV, most works investigate one-stage SFC mapping and the capacity of SFC instance 
is fixed [7-9]. In reality, mobile traffic demand is frequently fluctuating, and MNOs have to 
dynamically adjust the capacity of the related VNFs efficiently [10]. For example, tidal effects, 
large gatherings, hot events, etc., MNOs need to adjust the capacity of the related application 
VNFs (e.g. UPF) in the 5G user plane to ensure the quality of service expected by users and 
to optimize resource usage efficiency. This is where the VNF scaling comes into play, and the 
VNF scaling includes vertical scaling and horizontal scaling. Vertical scaling refers to adding 
or reducing the processing resources of the existing VNF instances, while horizontal scaling 
is done by increasing or decreasing the number of the same VNF instances [11]. However, it 
is a serious task to determine which type of VNF scaling and how much instance capacity to 
perform since there are some parameters (e.g., the VNF type, and its resource requirements) 
to consider.  

To solve this issue, the existing works [12-14] propose some reactive VNF horizontal 
scaling methods to achieve dynamic resource provisioning. Since spawning a new VNF 
instance (e.g., copying VM image, booting VM) may incur unpredictable delay, the reactive 
way may degrade the quality of service and even cause packet loss. In [15,16], the traffic 
forecasting approaches are exploited to forecast the future traffic demands to guide the 
dynamic VNF scaling. Furthermore, Fei et al. [17] proposed an adaptive VNF scaling and flow 
routing algorithm with demand prediction, where one instance with residual demand can be 
created after launching some instances with the maximum capacity. In summary, all the above 
works are to determine the capacity of new instances before they are deployed, which limits 
the joint optimization of instance capacity and deployment location. In a cloud network, MNO 
needs to provide multiple network services with different requirements, resulting in the uneven 
distribution of resource usage in each data center. if the VNF instance capacity is fixed before 
deployment, and the remaining node resources cannot meet the larger instance capacity, the 
fragmented node resources cannot be fully utilized. However, the adaptive VNF instance 
capacity can allow for fine-grained VNF scaling with node resources, which achieves higher 
deployment flexibility to improve resource utilization. 

The main contributions of this paper can be summarized as follows: 
 We propose a traffic forecasting approach based on LSTM to realize proactive VNF 

scaling and discuss the impact of window size on prediction accuracy. 
 We model the VNF scaling as integer quadratic programming and then propose an 

adaptive VNF scaling approach. For under-provisioning VNFs, we design a resource-
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aware new VNF instance deployment algorithm achieving best-fit capacity with node. 
 We also design a redundant VNF instance management mechanism to efficiently scale 

in over-provisioning VNFs, including how to delete or reload idle instances. 
 We conduct simulation experiments using a trace-driven approach and prove that our 

proposed PAVS approach achieves less total cost. 
The rest of this paper is structured as follows. Section 2 briefly reviews the related works 

of this paper, and Section 3 presents the network model and problem formulation in detail. 
Then, in Section 4, we discuss how to solve the traffic forecasting problem and VNF scaling 
problem, and propose a redundant VNF instance management mechanism. In Section 5, we 
describe the resource-aware new VNF instance deployment algorithm based on matrix coded 
genetic algorithm. Large-scale real trace-driven simulations and performance evaluations are 
performed in Section 6. We conclude this paper in Section 7. 

2. Related Works 

2.1 Optimal deployment of SFC 
With the rapid development of NFV, there have been many works on the optimal deployment 
of SFCs, and the SFC deployment is defined as a resource allocation problem. The study in 
[18] models the SFC deployment as an integer linear programming (ILP) considering the time-
varying workloads, and designs a two-stage heuristic solution to solve the ILP. You et al. [19] 
consider load balancing as the optimization objective, and propose a new load-balancing 
policy termed constrained min-max placement. To improve the scalability of SFC deployment, 
[20] designs a heuristic algorithm with an improved multi-stage graph to effectively achieve 
VNF placement. The authors of [21] establish a Markov decision process model of the SFC 
deployment problem and propose a deep reinforcement learning (DRL) based scheme to 
handle the complexities of the large-scale network. Furthermore, in [22], the robust 
optimization model is utilized to overcome the resource demand uncertainty of SFC 
deployment. Li et al. [23] devise a near-optimal approximation algorithm for the robust SFC 
provisioning in mobile edge computing (MEC), by adopting the Markov approximation 
technique. The above studies all assume that the traffic demand of network services is a 
deterministic value or an approximate interval, and does not consider the follow-up processing 
when traffic fluctuates widely. 

2.2 VNF Scaling 
To address traffic fluctuation and take advantage of NFV, many researchers have paid a lot of 
attention to the topic of VNF scaling. The works [24-26] evaluate the performance and cost of 
horizontal and vertical scaling in cloud computing, and conclude the optimal scaling strategy 
for different scenarios. Wang et al. [13] investigate the maximum supportable traffic rate based 
on past information to obtain a feasible VNF pre-planning deployment solution, and then 
propose a VNF horizontal scaling method based on the ski-rental algorithm. The work 
presented by Zhao et al. [27] proposes a VNF scaling management mechanism based on the 
threshold and optimized VNF deployment algorithm, which focuses on transmission delay and 
resource utilization. Pei et al. [28] investigate the SFC embedding with the VNF dynamic 
release problem, which efficiently deploys SFC requests and optimizes the number of placed 
instances. However, these studies are reactive in nature. To proactively achieve VNF scaling, 
Tang et al. [15] adopt the ARMA model to derive the traffic estimation, and design two VNF 
placement algorithms to guide the dynamic VNF scaling for SFC Run-to-Complete in a Rack 
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and Cross Rack Pipelined. The approach in [16] adopts a Fourier-Series-based forecasting 
method and 3-σ  principle to ensure the network has enough resources and proposes an online 
VNF instance deployment method. Moreover, Zhai et al. [29] propose a fine-grained dynamic 
VNF scaling approach, which can efficiently improve the success ratio and reduce the resource 
cost. The authors of [30] study the problem of a joint user association, SFC placement, and 
VNF scaling on the 5G core network and MEC. In general, the above works have done a good 
job of VNF scaling, but the way they first determine the instance capacity and then deploy 
them limits the flexibility of VNF deployment. 

3. Problem Description and Formulation 

3.1 Cloud Network and Service Function Chain 
The cloud network is represented as an undirected graph ( ),G N E= . Each substrate node 
n N∈  could consist of one or more servers that support virtualization, and its available 
processing resource capacity is denoted as nC , which are used to instantiate the VNFs. Note 
that all substrate nodes are connected by high-speed optical fiber and the physical links are 
full-duplex. The physical link ,m ne E∈  connecting the substrate nodes ,m n N∈  has available 
bandwidth ,m nB . 

The network operators could deploy and operate a set of VNFs denoted by F  (such as 
firewall, NAT, DPI, load balance, customized VNFs, etc.) in the NFV infrastructure (NFVI), 
and they deal with the arrived service requests set R  in the fashion of time-slotted, that is 
batch processing in a fixed time interval. A service request ir R∈  arriving at it  is described as 
a 4-tuple ( ), , ,i i i is d t sfcα and lasts it∆  in the form of the SFC, where the is N∈  and id N∈  
are the source and the destination nodes respectively, and isfc  is the VNF sequence of the 
service request ir . We use ( )i tα  to denote the traffic demand of service requests ir  at t  for 

i i it t t t≤ ≤ + ∆ , and the traffic demand changes from time to time. For each VNF f F∈ , fc  
indicates the processing resources required by the VNF f  instance to handle a unit traffic 
demand, which reflects the VNF diversity in processing traffic. What's more, the VNF instance 
can be in three states: ACTIVE, IDLE, and DELETED. ACTIVE means that the instance is 
working to process traffic flows, IDLE means that the instance is still on the substrate node 
but not working, and DELETED means that the instance will be released soon. 

We assume that traffic flows belonging to different SFCs can share the same type- f  
VNF instances. We use ,f nx  to indicate whether there is a type- f  VNF instance assigned on 
the substrate node n N∈  ( , 1f nx = , at least one instance is assigned on the node) or not 
( , 0f nx = ). At the beginning of each time slot t , the residual resource capacity of the substrate 
node n  is denoted by ( )nC t  and the residual bandwidth of the physical link ,m ne E∈  is 
represented by ( ),m nB t . 

3.2 VNF Scaling and Traffic Routing 
In the initial state 0t = , the processing capacity ( )0fC  of type- f  VNF instances and the 
routing bandwidth requested by the in-service network services have been satisfied. However, 
because of varing traffic demands and the arrival of new service requests, the processing 
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capacity of VNFs and the bandwidth requirements may not able to cover the demands in 
successive time slots. In addition, once a VNF instance is created, revising the computing and 
memory size on-the-fly is not supported in the cloud computing platform (e.g., Openstack).  

To ensure the quality of service and improve resource utilization efficiency, we employ 
proactive traffic forecasting of each SFC to guide VNF scaling ahead of time. The VNF scaling 
includes the redundant instance management of over-provisioning VNFs and new instance 
deployment of under-provisioning VNFs. When traffic demand decreases, we convert the 
redundant instances into an idle state instead of deleting them immediately, which can be 
reactivated to avoid frequent creation and deletion. While the traffic demand increases, we 
need to create the new VNF instances with an adoptive capacity, where the capacity of new 
instances can be best-fit with node rather than the fixed capacity in other horizontal scaling 
works [27,29], which is supported by the current cloud computing platform. We use max

fc  to 
denote the maximum traffic that a VNF f  instance can process in a time slot. With the 
obtained traffic demand ( )i tα  along each SFC ir R∈  in t , the processing resources that need 
to be allocated to VNF f  instances can be calculated by (1). 
 ( ) ( )

[ ]: ,i i i

f f i
r R t t t t

C t c tα
∈ ∈ +∆

= ∑  (1) 

For traffic flow routing along a SFC, Split/Merge [31] enables efficient, load-balanced 
elasticity to support VNF scaling. The work [32] studies the dependency between VNFs and 
the traffic changing impact. Here, we do not study the impact of traffic changes between VNFs 
and assume that the traffic change ratio is 1 for all VNFs. Let variable ( ), , ,

i
g f m ny t  as routing 

variable denoting the amount of traffic forwarded from the type- g  instances on the node m  
to the type- f  instances on the node n  belonging to ir  in time slot t . Then, the processing 
capacity requested by VNF f  on the node n  is: 
 ( ) ( ), , , ,

i

i
f n f g f m n

r R f F m N
C t c y t

∈ ∈ ∈

= ∑ ∑ ∑  (2) 

Thus, the number of VNF f  instances that need to be newly deployed on the node n  in 
t  is: 

 ( )
( ) ( )

( ) ( )
, ,

, ,,
max

0 1

1
f n f n

new
f n f nf n

f

C t C t

C t C tz t
other

c

≤ −
 − −= 
 
  

 (3) 

Where the symbol [ ]•  means round up. When ( ) ( ), , 1f n f nC t C t≤ − , this does not need to 

create a new type- f  VNF instance on the node n . When ( ) ( ) max
, ,0 1f n f n fC t C t c< − − ≤  and 

the node resource is more than the demand, there will be one new instance with capacity 
( ) ( ), , 1f n f nC t C t− − . In other cases, we have to create ( ), 1new

f nz t −  instances with capacity max
fc  

and one instance with ( ) ( ) ( )( ) max
, , ,1 1new

f n f n f n fC t C t z t c− − − − . After new VNF instances are 
spawned, traffic flow along an SFC can be split through many instances of the same type VNF 
and merged at the next VNF (i.e., successor VNF). 

3.3 Cost Minimization Problem 
The goal of MNOs is to minimize the total resource consumption of provisioning all network 
services. To avoid performance degradation and even service interruption caused by traffic 
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fluctuation, the related VNFs have to be scaled proactively. In t , MNOs forecast the traffic 
demand ( )1i tα +  of each in-service SFC ir R∈  at the next moment 1t + . According to the 
forecasted results and newly arrived service requests in 1t + , the MNO checks whether the 
processing capacity of existing VNF instances covers the upcoming traffic demands. If not, 
MNOs need to scale out the under-provisioning VNF by deploying new instances to handle 
the traffic flows in 1t + . If the capacity of existing VNF instances is over-provisioning, the 
corresponding number and size of active VNF instances will be set to the idle state. Thus, we 
focus on the following two types of cost.  

(1) Operating Cost: Let fφ  denote the operating cost of the VNF f  instance renting a 
unit of processing resource per time slot. The total operating cost for running all VNFs of SFCs 
in t  is: 
 ( ) ( ),op f f n

n N f F
C t C tφ

∈ ∈

= ∑ ∑  (4) 

(2) Deployment Cost: Let fϕ  be the resource usage cost for deploying a new type- f  
VNF instance. To create a new instance, the system needs to copy the VNF's image to the 
server node, and then spawn a VM/docker with the image. The total deployment cost for 
creating new VNF instances in t  can be calculated by (5): 
 ( ) ( ),

new
de f f n

n N f F
C t z tϕ

∈ ∈

= ∑ ∑  (5) 

Table 1 lists significant notation in this section. 
 

Table 1. Notation 
Notation Description 
N  Set of substrate nodes 
E  Set of physical links 

nC  The capacity of the substrate node n  

,m nB  The available bandwidth of the physical link ,m ne  

F  Set of VNFs f F∈  

fc  Amount of processing resources required by the VNF f  to process a unit traffic 

R  Set of service requests 

is  The source node of the service request ir  

id  The destination node of the service request ir  

( )i tα  Traffic demand of the service request ir  

isfc  VNF sequence of the service request ir  

it∆  Duration of the service request ir  

,f nx  VNF f  deployed on n  

, , ,
i
f g m ny  Amount of traffic forwarded from instances of VNF g  on the node m  to instances of 

VNF f  on the node n  
max
fc  Maximum processing capacity of a instance of VNF f  

( )fC t  Processing capacity requested by type- f  VNF in time slot t  

( ),f nC t  Total processing capacity requested by VNF f  on node n  

( ),
new
f nz t  Number of newly created instances of VNF f  on the node n  in t  



3590                                                                                 Qiu et al.: Traffic Forecast Assisted Adaptive VNF Dynamic Scaling 

fφ  Operating cost of the VNF f  instance renting unit processing capacity per time slot 

fϕ  The deployment cost of launching a new VNF f  instance 

 
Therefore, the optimization objective of this problem is to minimize the total resource 

costs over the time span T : 
 ( ) ( )( )min op de

t T
C t C t

∈

+∑  (6) 

The VNF scaling problem can be formulated as an Integer Quadratic Programming (IQP), 
and the constraints are described as follows: 

(1), (2), (3) 
 ( ), , ( ),f n f n n

f F
C t x C t n N

∈

≤ ∀ ∈∑  (7) 

 ( ) ( ), , , , ,,
i

i
g f m n m n m n

f F r R g F m N
y t B t e E

∈ ∈ ∈ ∈

≤ ∀ ≤∑ ∑ ∑ ∑  (8) 

 ( ) ( ), ,f n f
n N

C t C t f F
∈

= ∀ ∈∑  (9) 

 ( ) ( ), , , , , , , , ,i i
f g m n g f n m i

f F m N f F m N
y t y t r R g F n N

∈ ∈ ∈ ∈

= ∀ ∈ ∈ ∈∑ ∑ ∑ ∑  (10) 

 { } ( ) ( ), , , , ,0,1 , , 0new i
f n f n f g m nx z t y t+∈ ∈Ζ ≥  (11) 

Constraint (7) guarantees that the total processing capacity required by the VNF instances 
assigned on the node n N∈  is not more than the residual capacity of the node n  in t . 
Constraint (8) ensures that the total traffic carried by the physical link ,m ne E∈  cannot exceed 
its residual capacity ,m nB  in t . The equality between the total processing capacity of type- f  
VNF instances assigned on all nodes and the required processing capacity of VNF f  in t  is 
established by constraint (9). Constraint (10) represents flow conservation for type- f  
instances on the node n . Constraint (11) specifies the range of variables ,f nx , ( ),

new
f nz t  and 

( ), , ,
i
f g m ny t . 

4. Proactive Adoptive VNF Scaling Approach 
In this section, we first design an effective traffic forecasting method based on LSTM to 
proactively forecast traffic demands, and then describe the adaptive VNF scaling algorithm in 
detail. Finally, we propose a redundant instance management mechanism including deleting 
and reloading idle instances. 

4.1 Traffic Forecasting Using LSTM 
The main reason we use traffic forecasting is to achieve proactive VNF scaling, thus the 
accuracy of traffic prediction is very important for VNF scaling. To realize effective 
forecasting of traffic demand, we use a deep learning method called LSTM. As shown in Fig. 
1, the LSTM is a special Recurrent Neural Network (RNN) based on long and short-term 
memory. It introduces the long and short-term memory cell structure to replace the ordinarily 
hidden neurons in the general RNN. It can dynamically change the weights of the input, state 
and output information in the cell structure at the current time step, and dynamically adjust the 
influence of historical input data on the prediction results on the time scale to solve the long-
term dependence problem in the traditional RNN. 
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Fig. 1. LSTM cell framework 

 
Our goal is to use historical traffic data information to forecast the upcoming traffic 

demand ( )i tα  of each SFC ir , and then use the traffic demand information to guide the VNF 
scaling. LSTM supports multiple input and single output mode, so we use a vector 

( ) ( ) ( ) ( )T , T+1 ,..., 1 ,i i i it t t tα α α α− − −    as the input sequence and the traffic demand of next 
slot as the output result. Moreover, we can improve the prediction accuracy by controlling the 
size of the sliding window (i.e., the number of retrospective historical data). 

4.2 Proactive Adaptive VNF Scaling Algorithm 
Based on traffic forecasting, the MNO can perform the VNF scaling in advance to cope with 
the traffic fluctuation. The vertical scaling needs to restart the running VNF instances, hence 
we adopt horizontal scaling to adjust the total processing capacity of each VNF. 

In this part, we describe the Proactive Adaptive VNF Scaling (PAVS) algorithm in detail, 
and the pseudocode is shown in Algorithm 1. PAVS uses the above LSTM to forecast the 
traffic demand ( )1i tα +  of the SFC ir  at the next slot 1t + . Based on ( )1i tα + , PAVS can 
compute the processing capacity ( )1fC t +  required by each VNF f  in the time slot 1t + . If 
the required processing capacity in the next slot 1t +  is more than the current processing 
capacity, the algorithm will scale out the corresponding VNFs according to the residual node 
resource and link bandwidth. It derives the processing capacity ( ), 1f nC t +  on each node n , 
and then calculates the number of newly created instances for each VNF f . Finally, these new 
instances will be spawned and assigned to serve the traffic flows of SFCs. 

Especially, if the required processing capacity in the next slot 1t +  is less than the current 
processing capacity, we convert corresponding active instances to the idle state and manage 
the lifecycle of redundant instances by the ski-rental algorithm. The idle instances can be 
reactivated in the idle period to work. Beginning with 2t =  (line 2), the algorithm checks the 
lifecycle of idle instances and deletes those instances after they have been idle for the “deadline” 
number of time slots. From 1t = , we monitor the real traffic rates (line 6). If the estimated 
VNF f  capacity cannot cover the actual demand, we will reactivate the idle instances to 
process the unserved traffic (lines 8-11). If the idle instances cannot cover the capacity 
requirement, it will call subprogram RVID to create new instances and routing paths (lines 
12-13). We then update the residual node capacity and link bandwidth. 
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Next, we explain how to perform adaptive VNF scaling in SFCs based on traffic 
forecasting in detail. Based on the forecast traffic demands ( )1i tα + , and the new arrival 
requests (lines 17-18), the processing capacity of each VNF f  in the next slot 1t +  can be 
estimated. Comparing the capacity demand at the next slot with the current capacity, we can 
determine whether the current VNF capacity needs to be adjusted. If the current processing 
capacity cannot meet the demand at the next slot, PAVS calls a subprogram RVID to jointly 
determines the capacity and deployment location of new instances on available nodes (lines 
20-22). RVID will be given in detail in section 5. When the required processing capacity 
decreases, we will select the redundant VNF f  instances on the node n  and turn them into 
the idle state in the next slot. More importantly, we set a maximum lifecycle for each idle 
instance using the ski-rental algorithm (line 24). 

Algorithm 1. Proactive Adaptive VNF Scaling (PAVS) algorithm 
Input: ( ), , , , ( ), ( )G N E R F f fφ ϕ=  

Output: ( ) ( ), , , , ,, ,new i
f n f n f g m nx z t y t  

1. for 1, 2, ,t T= L do 
2.    for 1,2, ,f F= L  and 2t ≥ do 
3.    The remaining lifecycle of idle instances -1 
4.    Delete those instances after they have been idle for the "deadline" number of time slots 
5.    end for 
6.    Monitor real traffic rates ( )*

i tα , ir R∀ ∈  
7.    for 1, 2, ,f F= L  do 

8.    Compute the required processing capacity ( )*
,f nC t  on each node n  

9.    if ( ) ( )*
, ,f n f nC t C t≥  then 

10.       Reactive type- f  VNF instances that are in IDLE state 
11.    end if  
12.    if The idle instances cannot cover the added capacity then 
13.       Call RVID to deploy new instances and routing paths 
14.    end if  
15.    end for 
16.    Update the residual node capacity ( )nC t  and bandwidth ( ),m nB t  

17.    Derive forecasted traffic demand ( )1i tα +  by LSTM, [ ]: 1 ,i i ir R t t t t∀ ∈ + ∈ + ∆  

18.    Add new arrival service requests ( ) [ ]1 , : 1 ,i i i it r R t t t tα + ∀ ∈ + ∈ + ∆  
19.    for 1, 2, ,f F= L  do 
20.       Compute the processing capacity ( )1fC t +  and compare it with the last slot 

21.       if ( ) ( )1f fC t C t+ >  then 
22.       Call RVID to deploy instances and allocate the routing path 
23.       else 
24.       Convert the redundant VNF f  instances to idle and set a lifecycle for idle instances 
25.       end if  
26.    end for 
27.    Update residual node capacity ( )nC t  and bandwidth ( ),m nB t  
28. end for 
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4.3 Redundant VNF Instance Management Mechanism 
For the over-provisioning VNF instances, we choose to keep them in the system for some time 
instead of directly deleting them. That is because the traffic fluctuation and new arrival service 
requests may cause the frequent deletion and creation of VNF instances, which will incur 
significant deployment costs. Inspired by literature [13], We use the ski-rental algorithm to set 
a maximum lifetime for every idle instance to optimize resource usage efficiency. When the 
instance capacity of VNF f  on the node n  is over-provisioning, we select the corresponding 
redundant instances and convert them to the idle state. The idle instances can save operating 
costs (e.g., energy consumption) compared with the active instances. Meanwhile, for each idle 
instance, its maximum lifetime "deadline" j  follows the given distribution: 

 
( )( )

1 1

1 1 1

f

f

j
f

j
f f f

P
∆ −

∆

 ∆ −
=   ∆ ∆ − − ∆ 

 (12) 

Where ( )f f f fcϕ φ ∆ =   . When an instance has been idle for the "deadline" number of time 
slots, it will be deleted from the node. If an idle instance needs to be reloaded again, it will be 
reactivated to process traffic flows. In this way, the algorithm can effectively balance 
deployment and operating expenses to reduce total costs. Meanwhile, it has been proved that 
the ski-rental algorithm can achieve a competitive ratio of 1e e − [33]. 

5. Resource-aware VNF Instance Deployment Algorithm 
We now present the subprogram Resource-aware VNF Instance Deployment (RVID) 
algorithm. Given the traffic demands ( )1i tα +  and the substrate network resource status, the 
problem of deploying new instances and setting routing paths remained to be solved to serve 
the increased traffic demands of SFCs. 
 

Algorithm 2. RVID based on Matrix Coded Genetic Algorithm 
Input: ( ) ( ) ( ) ( ),1 - , , ,i i i n m nt t r C t B tα α+  

Output: VNF deployment decision ( )* 1X t +  
1. NUMPOP=100, MAXGEN = 500, Pc=0.75, Pm=0.05 
2. Calculate the quantity of VNFs to be scaled in the time slot 1t +  
3. Initialize population NUMPOP, the chromosome of each individual is encoded by a matrix 
4. for gen = 1: MAXGEN do 
5.    if The chromosomes satisfy the constraint (7)-(10) then 
6.       Calculate the fitness of chromosomes, the fitness is the reciprocal of resource costs 
7.    else 
8.       The fitness value is the small penalty 
9.    end if  
10.    Calculate the priority of chromosomes participating based on fitness 
11.    Crossover candidate chromosomes with probability Pc 
12.    Variant candidate chromosomes with probability Pm 
13.    Generate the kid population, repeat steps 4-8 
14.    Replace chromosomes with high fitness in the kids with chromosomes with low fitness in the 

parent and generate a new population 
15. end for 
16. Keep the best chromosomes and return to their corresponding VNF deployment strategy 
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The SFC deployment has been proved to be an NP-hard problem [34,35]. When the 
network function capacity is expanded, it is necessary to deploy new instances and add new 
routing paths, which can be regarded as the deployment of a service function chain containing 
only one VNF. Therefore, the new instance deployment and flow routing path allocation can 
be seen as a simplified variant of SFC deployment. To reduce the computational complexity, 
we design an RVID algorithm based on the matrix-coded genetic algorithm, and the specific 
process is given in Algorithm 2. RVID first calculates the quantity of VNFs to be scaled in 
the time slot 1t + , which determines the number of columns in the matrix. We then generate 
an initial population with the number of NUMPOP, where the chromosome of each individual 
adopts a matrix coding method (line 3). As shown in Fig. 2, the number of rows in the matrix 
is determined by the number of available substrate nodes, and the value of the corresponding 
position indicates the traffic that the VNF needs to process at the node. The sum of each row 
of the matrix represents the processing capacity that this node needs to allocate for each VNF, 
and the total amount cannot exceed the residual resources of the node. The sum of each column 
of the matrix indicates the capacity of each VNF that needs to be scaled out. Each individual's 
chromosome represents a VNF instance deployment scheme, which needs to be checked 
whether the constraints are met. If the chromosome satisfies all constraints (7)-(10), the fitness 
is equal to the reciprocal of resource usage costs, which consist of node resource and 
bandwidth usage cost, else its fitness will be a very small penalty value and it is eliminated 
(lines 5-9). We choose these individuals with larger fitness values to participate in genetic 
selection and perform crossover and mutation operations (lines 10-12). The individuals with 
higher fitness in the newly generated kids replace the individuals with lower fitness in the 
parent to generate a new population. Finally, after the loop is over, the best-performing 
individual is selected, and the VNF instance deployment scheme corresponding to its 
chromosome is decoded. 

 

50   60   0     0     0     0     30   0     0
0     0     60   0     0     0     0     0     0
0     0     0     50   0     0     0     10   0
0     0     0     0     20   0     0     0     0
0     0     0     0     0     10   0     0     10
10   0     0     0     15   25   0     15   20

Substrate node index

Types of VNFs that need to be scaled

The capacity of the VNF that needs to be scaled

N
ot exceed node capacity

 
Fig. 2. Schematic diagram of individual coding 

 
When performing crossover and mutation operations, the RVID algorithm adopts the 

matrix coding method, which makes the traditional single-point crossover or mutation no 
longer applicable. Thus, we design a crossover and mutation method based on the column. 
When different chromosomes are crossover, the crossover is carried out in the basic unit of the 
column, while the mutation of a single chromosome is mutated at the same time in the same 
column. In this way, the generation of individuals violating the constraints can be avoided, 
and the rate of convergence of the algorithm can be accelerated. 
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6. Performance Evaluation 

6.1 Simulation Setup 
The experimental cloud data center is built using Openstack and contains 15 RH2288 V3 
servers. Network equipment includes 1 10 GB traditional switch and 3 V580-32X SDN 
switches, the specific server configuration parameters are shown in Table 2. The traffic 
demands of service function chains are derived from the data center access gateway server by 
trace-driven. The time interval of traffic statistics in the data set is 1 hour, and the statistical 
duration spans over 1500 hours. We divide data center traffic into different flows according to 
different service requirements, such as video, web services, instant messaging, etc. Each flow 
goes through an SFC containing related VNFs. 
 

Table 2. Server Parameters  
CPU Memory(GB) Hard Disk(TB) 

28 CPUs x Intel(R) Xeon(R) CPU E5-2660 v4 @ 
2.00GHz 1024 10 

 
We use the PyTorch framework 3.8 to build the LSTM network. The experimental 

parameters of traffic forecast based on LSTM are selected as follows: the time step is set to 
25, the learning rate is 0.01, the learning period is 10000, the loss function is the minimum 
mean square error, and the optimizer selects Adam. Select 70% of the traffic data is used as 
the training set, and 30% of the data is used as the test set. In the genetic algorithm, the total 
population size is 100, the crossover probability is 0.75, the mutation probability is 0.05, and 
the maximum evolutionary generation is 500. 

 

6.2 Effectiveness of Traffic Forecast 
We first evaluate the performance of the traffic forecasting method based on LSTM and adopt 
Mean Squared Error (MSE) as the performance indicator. We first investigate the impact of 
window size on prediction accuracy in Fig. 3. The input window size is selected from [5, 10, 
15, 20, 25, 30], and the MSE is the smallest when the window size is 25. Thus, we use 25 as 
the window size for the subsequence experiments. Meanwhile, the real traffic demand 
fluctuation is shown in Fig. 4. Fig. 5 shows the forecast error of the traffic forecasting method 
at each moment. The forecast errors between the forecasted traffic sequence and the original 
sequence are less than 0.5. Thus, the forecast result can verify that the LSTM network can 
effectively forecast the trend of traffic changes and the forecasted result can be used to guide 
the dynamic VNF scaling. 
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Fig. 3. Forecast error with window size 

 
Fig. 4. Dataset traffic 

 
Fig. 5. Relative error of traffic forecast 
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6.3 Impact of Redundant VNF Instance Management Mechanism 
To evaluate the effectiveness of the redundant VNF instance management mechanism, we 
compare our proposed ski-rental model (SRM) with the random lifecycle (RLC) and static 
lifecycle (SLC) methods. The RLC randomly configures the lifecycle of the idle instances in 
the interval of [1, 7]. The SLC always sets the lifecycle of the idle instances to a fixed value 
(i.e., 7). As shown in Fig. 6, because the SLC sets the lifecycle of the idle instances to a 
maximum fixed value, the idle instances remain in the system for a long time resulting in the 
highest operating cost. According to Equation (12), the SRM tends to configure the lifecycle 
of the idle instances with a larger value, so the SRM will incur more operating costs than the 
RLC. The RLC has the lowest operating costs because the average lifecycle of those idle 
instances is the shortest. 

 
Fig. 6. Operating costs with different lifecycle management 

 

On the other hand, idle instances can be reactivated to continue to provide services, which 
can reduce the creation of new instances to decrease deployment costs. The idle instances with 
a longer lifecycle remain in the system longer, which has a greater probability of being 
reactivated. Thus, as shown in Fig. 7, the deployment cost of SLC is the least, and the SRM is 
less than the RLC during the long-time operation of the system. 

 
Fig. 7. Deployment cost with different lifecycle management 
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Fig. 8 depicts the total cost of the three methods over time. As we can see, the total cost 
of the SRM is the smallest. That is because the SRM can effectively balance the retention 
lifecycle of idle instances according to the deployment and operating costs of VNF instances, 
thereby improving resource utilization. What’s more, as time increases, the difference in cost 
between the three methods is bigger and bigger. 

 
Fig. 8. Total cost with different lifecycle management 

6.4 Comparison with Other Approaches 
In this part, we investigate the performance of the proposed PAVS algorithm compared with 
the other two algorithms called Best-fit and VPCM [17]. The Best-fit algorithm creates new 
VNF instances only with the same capacity and places the newly created VNF instances on 
the used node with the maximum residual capacity, that is it adopts a greedy algorithm. It 
should be noted that all the total costs in the simulation are calculated based on the real traffic 
requirement with different VNF scaling schemes by different algorithms, and all three 
algorithms add our proposed redundant instance management mechanism. We first verify the 
solution efficiency of the RVID algorithm based on the matrix-coded genetic algorithm. It can 
be seen from Fig. 9 that the proposed RVID algorithm can achieve fast convergence when 
solving the approximate optimal solution. 

 
Fig. 9. Rate of convergence of RVID algorithm  

0 200 400 600 800 1000 1200 1400

Time slot (h)

0

0.5

1

1.5

2

2.5

3

3.5

4

To
ta

l c
os

t

10 4

SLC
RLC
SRM

0 50 100 150 200 250 300 350 400 450 500

Number of iterations

1700

1800

1900

2000

2100

2200

2300

2400

D
ep

lo
ym

en
t c

os
t



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022                   3599 

 
Fig. 10. Total cost under different algorithms 

 
Next, the experiment results shown in Fig. 10 describe the total costs of the three 

algorithms changing over 1500 time slots. We can clearly see that PAVS achieves the lowest 
total cost compared with Best-fit and VPCM. This is due to our proposed PAVS algorithm 
jointly resolves the capacity and deployment location of new instances, rather than 
determining instance capacity before deploying. According to the initial deployment of SFCs, 
joint decision-making can make full use of the residual resource of substrate nodes and links, 
while the other method may lead to circuitous paths due to resource constraints. Moreover, 
Best-fit prioritizes the scaled VNF instance on the node with the most residual resources, 
which may miss an optimal location that satisfies capacity constraints instead of the maximum 
residual capacity. Thus, the Best-fit produces the highest total cost. 

7. Conclusion 
We investigate the VNF scaling problem taking account of the traffic fluctuation of service 
function chains in the paper. We first model this problem as an integer quadratic programming, 
which minimizes the total resource consumption incurred by VNF deployment and operating. 
And then we propose a proactive adaptive VNF scaling approach. The approach first employs 
a traffic forecasting method based on LSTM to forecast the traffic demand. When the current 
capacity cannot cover the next slot demand, a resource-aware new VNF instance deployment 
algorithm based on a matrix coding genetic algorithm is devised to make full use of substrate 
network resources and decrease deployment costs. Meanwhile, when traffic demands decrease, 
we propose a redundant instance management mechanism to avoid the frequent creation and 
deletion of instances. Trace-driven simulation further demonstrates that the overall cost can 
be reduced significantly by our method and the good performance. In future work, we will 
study the dynamic extension of already deployed SFCs or VNF forward graphs to meet the 
users’ new requirements, such as the security level. 
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